Copied to
clipboard

G = C123S32order 432 = 24·33

3rd semidirect product of C12 and S32 acting via S32/C32=C22

metabelian, supersoluble, monomial

Aliases: C123S32, C3⋊S33D12, C34(S3×D12), (C3×C12)⋊14D6, C3316(C2×D4), C3⋊Dic320D6, C4⋊(C324D6), C12⋊S313S3, C3212(S3×D4), C327(C2×D12), C339D44C2, C33(D6⋊D6), (C32×C12)⋊6C22, (C32×C6).69C23, C6.98(C2×S32), (C3×C3⋊S3)⋊9D4, (C4×C3⋊S3)⋊10S3, (C12×C3⋊S3)⋊9C2, (C2×C3⋊S3)⋊11D6, (C6×C3⋊S3)⋊12C22, (C3×C12⋊S3)⋊13C2, (C2×C324D6)⋊3C2, C2.6(C2×C324D6), (C3×C6).119(C22×S3), (C3×C3⋊Dic3)⋊15C22, SmallGroup(432,691)

Series: Derived Chief Lower central Upper central

C1C32×C6 — C123S32
C1C3C32C33C32×C6C6×C3⋊S3C2×C324D6 — C123S32
C33C32×C6 — C123S32
C1C2C4

Generators and relations for C123S32
 G = < a,b,c,d,e | a3=b3=c2=d12=e2=1, ab=ba, cac=a-1, ad=da, ae=ea, cbc=ebe=b-1, bd=db, cd=dc, ce=ec, ede=d-1 >

Subgroups: 1752 in 270 conjugacy classes, 51 normal (19 characteristic)
C1, C2, C2, C3, C3, C3, C4, C4, C22, S3, C6, C6, C6, C2×C4, D4, C23, C32, C32, C32, Dic3, C12, C12, C12, D6, C2×C6, C2×D4, C3×S3, C3⋊S3, C3⋊S3, C3×C6, C3×C6, C3×C6, C4×S3, D12, C3⋊D4, C2×C12, C3×D4, C22×S3, C33, C3×Dic3, C3⋊Dic3, C3×C12, C3×C12, C3×C12, S32, S3×C6, C2×C3⋊S3, C2×C3⋊S3, C2×D12, S3×D4, C3×C3⋊S3, C3×C3⋊S3, C32×C6, D6⋊S3, C3⋊D12, S3×C12, C3×D12, C4×C3⋊S3, C12⋊S3, C2×S32, C3×C3⋊Dic3, C32×C12, C324D6, C6×C3⋊S3, C6×C3⋊S3, S3×D12, D6⋊D6, C339D4, C12×C3⋊S3, C3×C12⋊S3, C2×C324D6, C123S32
Quotients: C1, C2, C22, S3, D4, C23, D6, C2×D4, D12, C22×S3, S32, C2×D12, S3×D4, C2×S32, C324D6, S3×D12, D6⋊D6, C2×C324D6, C123S32

Smallest permutation representation of C123S32
On 48 points
Generators in S48
(1 5 9)(2 6 10)(3 7 11)(4 8 12)(13 21 17)(14 22 18)(15 23 19)(16 24 20)(25 33 29)(26 34 30)(27 35 31)(28 36 32)(37 41 45)(38 42 46)(39 43 47)(40 44 48)
(1 5 9)(2 6 10)(3 7 11)(4 8 12)(13 17 21)(14 18 22)(15 19 23)(16 20 24)(25 33 29)(26 34 30)(27 35 31)(28 36 32)(37 45 41)(38 46 42)(39 47 43)(40 48 44)
(1 25)(2 26)(3 27)(4 28)(5 29)(6 30)(7 31)(8 32)(9 33)(10 34)(11 35)(12 36)(13 46)(14 47)(15 48)(16 37)(17 38)(18 39)(19 40)(20 41)(21 42)(22 43)(23 44)(24 45)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)
(1 24)(2 23)(3 22)(4 21)(5 20)(6 19)(7 18)(8 17)(9 16)(10 15)(11 14)(12 13)(25 45)(26 44)(27 43)(28 42)(29 41)(30 40)(31 39)(32 38)(33 37)(34 48)(35 47)(36 46)

G:=sub<Sym(48)| (1,5,9)(2,6,10)(3,7,11)(4,8,12)(13,21,17)(14,22,18)(15,23,19)(16,24,20)(25,33,29)(26,34,30)(27,35,31)(28,36,32)(37,41,45)(38,42,46)(39,43,47)(40,44,48), (1,5,9)(2,6,10)(3,7,11)(4,8,12)(13,17,21)(14,18,22)(15,19,23)(16,20,24)(25,33,29)(26,34,30)(27,35,31)(28,36,32)(37,45,41)(38,46,42)(39,47,43)(40,48,44), (1,25)(2,26)(3,27)(4,28)(5,29)(6,30)(7,31)(8,32)(9,33)(10,34)(11,35)(12,36)(13,46)(14,47)(15,48)(16,37)(17,38)(18,39)(19,40)(20,41)(21,42)(22,43)(23,44)(24,45), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,24)(2,23)(3,22)(4,21)(5,20)(6,19)(7,18)(8,17)(9,16)(10,15)(11,14)(12,13)(25,45)(26,44)(27,43)(28,42)(29,41)(30,40)(31,39)(32,38)(33,37)(34,48)(35,47)(36,46)>;

G:=Group( (1,5,9)(2,6,10)(3,7,11)(4,8,12)(13,21,17)(14,22,18)(15,23,19)(16,24,20)(25,33,29)(26,34,30)(27,35,31)(28,36,32)(37,41,45)(38,42,46)(39,43,47)(40,44,48), (1,5,9)(2,6,10)(3,7,11)(4,8,12)(13,17,21)(14,18,22)(15,19,23)(16,20,24)(25,33,29)(26,34,30)(27,35,31)(28,36,32)(37,45,41)(38,46,42)(39,47,43)(40,48,44), (1,25)(2,26)(3,27)(4,28)(5,29)(6,30)(7,31)(8,32)(9,33)(10,34)(11,35)(12,36)(13,46)(14,47)(15,48)(16,37)(17,38)(18,39)(19,40)(20,41)(21,42)(22,43)(23,44)(24,45), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,24)(2,23)(3,22)(4,21)(5,20)(6,19)(7,18)(8,17)(9,16)(10,15)(11,14)(12,13)(25,45)(26,44)(27,43)(28,42)(29,41)(30,40)(31,39)(32,38)(33,37)(34,48)(35,47)(36,46) );

G=PermutationGroup([[(1,5,9),(2,6,10),(3,7,11),(4,8,12),(13,21,17),(14,22,18),(15,23,19),(16,24,20),(25,33,29),(26,34,30),(27,35,31),(28,36,32),(37,41,45),(38,42,46),(39,43,47),(40,44,48)], [(1,5,9),(2,6,10),(3,7,11),(4,8,12),(13,17,21),(14,18,22),(15,19,23),(16,20,24),(25,33,29),(26,34,30),(27,35,31),(28,36,32),(37,45,41),(38,46,42),(39,47,43),(40,48,44)], [(1,25),(2,26),(3,27),(4,28),(5,29),(6,30),(7,31),(8,32),(9,33),(10,34),(11,35),(12,36),(13,46),(14,47),(15,48),(16,37),(17,38),(18,39),(19,40),(20,41),(21,42),(22,43),(23,44),(24,45)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48)], [(1,24),(2,23),(3,22),(4,21),(5,20),(6,19),(7,18),(8,17),(9,16),(10,15),(11,14),(12,13),(25,45),(26,44),(27,43),(28,42),(29,41),(30,40),(31,39),(32,38),(33,37),(34,48),(35,47),(36,46)]])

48 conjugacy classes

class 1 2A2B2C2D2E2F2G3A3B3C3D···3H4A4B6A6B6C6D···6H6I6J6K6L6M6N12A12B12C···12N12O12P
order122222223333···3446666···6666666121212···121212
size1199181818182224···42182224···4181836363636224···41818

48 irreducible representations

dim11111222222244444444
type++++++++++++++++
imageC1C2C2C2C2S3S3D4D6D6D6D12S32S3×D4C2×S32C324D6S3×D12D6⋊D6C2×C324D6C123S32
kernelC123S32C339D4C12×C3⋊S3C3×C12⋊S3C2×C324D6C4×C3⋊S3C12⋊S3C3×C3⋊S3C3⋊Dic3C3×C12C2×C3⋊S3C3⋊S3C12C32C6C4C3C3C2C1
# reps12122122135432324224

Matrix representation of C123S32 in GL8(𝔽13)

10000000
01000000
00100000
00010000
00001000
00000100
000000012
000000112
,
10000000
01000000
00100000
00010000
00000100
0000121200
00000010
00000001
,
120000000
012000000
001200000
000120000
00001000
0000121200
00000001
00000010
,
1010000000
123000000
000120000
00110000
00001000
00000100
00000010
00000001
,
06000000
110000000
00010000
00100000
000012000
00001100
000000120
000000012

G:=sub<GL(8,GF(13))| [1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,12,12],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,1,12,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[12,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,1,12,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0],[10,12,0,0,0,0,0,0,10,3,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,12,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[0,11,0,0,0,0,0,0,6,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,12,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,12] >;

C123S32 in GAP, Magma, Sage, TeX

C_{12}\rtimes_3S_3^2
% in TeX

G:=Group("C12:3S3^2");
// GroupNames label

G:=SmallGroup(432,691);
// by ID

G=gap.SmallGroup(432,691);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-3,-3,-3,135,58,1124,571,2028,14118]);
// Polycyclic

G:=Group<a,b,c,d,e|a^3=b^3=c^2=d^12=e^2=1,a*b=b*a,c*a*c=a^-1,a*d=d*a,a*e=e*a,c*b*c=e*b*e=b^-1,b*d=d*b,c*d=d*c,c*e=e*c,e*d*e=d^-1>;
// generators/relations

׿
×
𝔽